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Direct Analysis of Heterogeneity in Treatment Effect

I Pros

I Analysis of heterogeneity of treatment effects via regression is straightforward and
policy relevant

I Yi = βXi + γTi + δ(Xi × Ti ) + εi

I γ̂ gives the impact of the treatment with X = 0

I γ̂ gives the differential marginal impact of the treatment as you increase X



Direct Analysis of Heterogeneity in Treatment Effect

I Cons:

I The Analysis of Heterogeneity is the last refuge of the insignificant or underpowered
RCT; look at enough covariates and you are sure to find heterogeneity on something

I Pre-analysis plans have taken on a particularly important role for the analysis of
heterogeneity; also the use of blocking or stratification in the research design to
signal the covariates over which you plan to look for differential treatment effects

I Interpretation: X ′s not randomly assigned



Direct Analysis of Heterogeneity in Treatment Effect

I Critical to use multiple inference corrections:

I Bonferroni: if the p-value for rejection in a single hypothesis test is α (.05), then
with q tests performed the rejection statistic should become α

q

I False Discovery Rate (Anderson 2008, JASA). Provides Stata code to correct
p-values for the number of hypotheses tested

I Use indexes or the Mean Effects techniques of Kling, Liebman, and Katz (2007) to
account for the covariance between interaction variables
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Essential Heterogeneity

I Papers by Heckman, Vytlacil, and co-authors introduced two important new ideas
into the conceptualization and analysis of treatment effects (not only in RCTs!)

1. Essential Heterogeneity: Not only do individuals have heterogeneous treatment
effects, but they partially understand this heterogeneity. Hence the rate at which
they comply with the treatment is a function of their (unobserved) treatment effect

2. Marginal Treatment Effects: Conditional impact of treating an individual on a set
of observables and for a given (potentially unobserved) propensity to comply with
the treatment. The MTE allows for the unification of numerous different types of
treatment effects within a single structure



Essential Heterogeneity

I Imagine that potential outcomes can be written as:

Y1 = X ′β1 + U1

Y0 = X ′β0 + U0

I X is a vector of observable attributes

I U is an unobserved residual

I The treatment effect is ∆ = Y1 − Y0 = X ′(β1 − β0) + U1 − U0



Essential Heterogeneity

I Let D(Z ) denote the observed treatment decision

I Let D∗(Z ) denote latent variable that generates D(Z )

D∗ = Z ′θ + UD

D(Z ) = 1D∗(Z)≥0 = 1Z ′θ+UD≥0

I Exclusion restriction (i.e., some element of Z which is not contained in X)

I By varying Z , manipulate probability of receiving treatment without affecting
potential outcomes

I Assume (UD ,U l ,U0) is independent of X and Z



Essential Heterogeneity

I Assumptions in more complicated (non-linear) models

1. The term µD(Z ) is a nondegenerate random variable conditional on X (i.e., Z has
independent predictive power on compliance above and beyond X or Z is a relevant
instrument for compliance)

2. (U1,Uc) and (U0,Uc) are independent of Z conditional on X (i.e., Z is a valid
instrument for compliance)

3. The distribution of µD(Z ) is absolutely continuous with respect to Lebesgue
measure (convenient for derivation/estimation)

4. supv E (|Y1||U = u) <∞, supv E (|Y0||U = u) <∞; (Potential outcomes are finite)

5. 0 < Pr(D = 1) < 1 (compliance probabilities strictly between 0 and 1)



Marginal treatment effect (MTE)

Remember that ∆ = Y1 − Y0 = X ′(β1 − β0) + U1 − U0

I Important building block is the Marginal treatment effect (MTE):

∆MTE (x , ud) = E (∆|X = x ,Ud = uD)

= x ′(β1 − β0) + E (U1 − U0|UD = uD ,X = x)

= x ′(β1 − β0) + E (U1 − U0|UD = uD)

I Evaluation of the MTE parameter at low values of uD averages the outcome gain
with unobservables making them least likely to participate

I Evaluation of parameter at high values of uD is the gain for those individuals with
unobservables them most likely to participate



Local Average Treatment Effect (LATE)

I LATE of Imbens and Angrist (1994) estimates the expected gain for those induced
to receive treatment through a change in the instrument from Z = z to Z = z ′

∆LATE (x , u′d , ud) = E (∆|X = x ,D(z) = 0,D(z ′) = 1)

= x(β1 − β0) + E (U1 − U0| − z ′θ ≤ UD ≤ zθ,X = x)

= x(β1 − β0) + E (U1 − U0| − z ′θ ≤ UD ≤ zθ)

=
1

ud − u′d

∫ u′d

ud

∆MTE (x , u)du



Local Average Treatment Effect (LATE)

I Then, as Z ′ and Z become arbitrarily close

lim
u′d→ud

∆LATE (x , u′d , ud) = ∆MTE (x , ud)

I LATE measures the average MTE across a range of the unobserved selection
distribution

I As that range converges to zero the LATE converges to the MTE evaluated
exactly at a single point on the distribution



Average Treatment effect (ATE)

This structure allows us to unify a variety of treatment effects as follows:

ATE (x) = E (∆|X = x)

= x(β1 − β0) + E (U1 − U0|,X = x)

= x(β1 − β0)∫ 1

0
∆MTE (x , u)du



Treatment on the treated (TOT)

D(z) = 1) = E (∆|X = x ,Z = z ,D(z) = 1)

= x(β1 − β0) + E (U1 − U0|UD ≥ −z ′θ)

=

∫ 1

0
∆MTE (x , u)hToTdu

I hToT is the inverse of the compliance rate induced by the experiment



Policy Relevant Treatment Effect

I Heckman and Vytlacil also introduce the Policy Relevant Treatment Effect: mean
effect of going from a baseline policy to an alternative policy per net person shifted

E (Y ′)− E (Y )

E (D ′)− E (D)

where the prime refers to an alternate policy



Marginal treatment effect

Several conceptual extensions to the Essential Heterogeneity concept:

I Variety of researchers have worked to build auction or WTP revelation
mechanisms into experiments

I Under perfect information the willingness to pay to receive the treatment should be
a direct measure of the MTE

I Examples of this include the Becker-Degroot-Marschak (BDM) mechanism, and
more recently the ‘Take it or Leave it’ (TIOLI) pricing experiments of Chassang,
Padro i Miguel and Snowberg

I The entire essential heterogeneity framework is still assuming that the treatment
effects themselves are invariant

I Identified only under the assumption that treatments alter ONLY the propensity to
enter the treatment

I But but not the impact of the treatment itself. This is clearly not the case for many
interventions
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