Treatment Effect Heterogeneity

Mauricio Romero

Direct Analysis of Heterogeneity in Treatment Effects

Direct Analysis of Heterogeneity in Treatment Effects

Direct Analysis of Heterogeneity in Treatment Effect

Pros

Analysis of heterogeneity of treatment effects via regression is straightforward and policy relevant

$$Y_i = \beta X_i + \gamma T_i + \delta (X_i \times T_i) + \varepsilon_i$$

- $\hat{\gamma}$ gives the impact of the treatment with X = 0
- $\blacktriangleright~\hat{\gamma}$ gives the differential marginal impact of the treatment as you increase X

Direct Analysis of Heterogeneity in Treatment Effect

Cons:

- The Analysis of Heterogeneity is the last refuge of the insignificant or underpowered RCT; look at enough covariates and you are sure to find heterogeneity on something
- Pre-analysis plans have taken on a particularly important role for the analysis of heterogeneity; also the use of blocking or stratification in the research design to signal the covariates over which you plan to look for differential treatment effects
- Interpretation: X's not randomly assigned

Direct Analysis of Heterogeneity in Treatment Effect

Critical to use multiple inference corrections:

- ▶ Bonferroni: if the p-value for rejection in a single hypothesis test is α (.05), then with q tests performed the rejection statistic should become $\frac{\alpha}{q}$
- False Discovery Rate (Anderson 2008, JASA). Provides Stata code to correct p-values for the number of hypotheses tested
- Use indexes or the Mean Effects techniques of Kling, Liebman, and Katz (2007) to account for the covariance between interaction variables

Direct Analysis of Heterogeneity in Treatment Effects

Treatment Effect Heterogeneity

Direct Analysis of Heterogeneity in Treatment Effects

- Papers by Heckman, Vytlacil, and co-authors introduced two important new ideas into the conceptualization and analysis of treatment effects (not only in RCTs!)
 - 1. **Essential Heterogeneity**: Not only do individuals have heterogeneous treatment effects, but they partially understand this heterogeneity. Hence the rate at which they comply with the treatment is a function of their (unobserved) treatment effect
 - 2. **Marginal Treatment Effects**: Conditional impact of treating an individual on a set of observables and for a given (potentially unobserved) propensity to comply with the treatment. The MTE allows for the unification of numerous different types of treatment effects within a single structure

Essential Heterogeneity

Imagine that potential outcomes can be written as:

$$\begin{array}{rcl} Y_1 &=& X'\beta^1 + U^1 \\ Y_0 &=& X'\beta^0 + U^0 \end{array}$$

X is a vector of observable attributes

U is an unobserved residual

▶ The treatment effect is $\Delta = Y_1 - Y_0 = X'(\beta^1 - \beta^0) + U^1 - U^0$

- Let D(Z) denote the observed treatment decision
- Let $D^*(Z)$ denote latent variable that generates D(Z)

$$D^* = Z'\theta + U^D$$

$$D(Z) = \mathbb{1}_{D^*(Z) \ge 0} = \mathbb{1}_{Z'\theta + U^D \ge 0}$$

- Exclusion restriction (i.e., some element of Z which is not contained in X)
- By varying Z, manipulate probability of receiving treatment without affecting potential outcomes

Assume
$$(U^D, U^I, U^0)$$
 is independent of X and Z

Essential Heterogeneity

Assumptions in more complicated (non-linear) models

- 1. The term $\mu_D(Z)$ is a nondegenerate random variable conditional on X (i.e., Z has independent predictive power on compliance above and beyond X or Z is a relevant instrument for compliance)
- 2. (U_1, U_c) and (U_0, U_c) are independent of Z conditional on X (i.e., Z is a valid instrument for compliance)
- 3. The distribution of $\mu_D(Z)$ is absolutely continuous with respect to Lebesgue measure (convenient for derivation/estimation)
- 4. $\sup_{v} E(|Y_1||U = u) < \infty$, $\sup_{v} E(|Y_0||U = u) < \infty$; (Potential outcomes are finite)
- 5. 0 < Pr(D = 1) < 1 (compliance probabilities strictly between 0 and 1)

Marginal treatment effect (MTE)

Remember that
$$\Delta = Y_1 - Y_0 = X'(\beta^1 - \beta^0) + U^1 - U^0$$

Important building block is the Marginal treatment effect (MTE):

$$\begin{aligned} \Delta^{MTE}(x, u^d) &= E(\Delta | X = x, U^d = u^D) \\ &= x'(\beta^1 - \beta^0) + E(U^1 - U^0 | U^D = u^D, X = x) \\ &= x'(\beta^1 - \beta^0) + E(U^1 - U^0 | U^D = u^D) \end{aligned}$$

- Evaluation of the MTE parameter at low values of u^D averages the outcome gain with unobservables making them least likely to participate
- Evaluation of parameter at high values of u^D is the gain for those individuals with unobservables them most likely to participate

▶ LATE of Imbens and Angrist (1994) estimates the expected gain for those induced to receive treatment through a change in the instrument from Z = z to Z = z'

$$\begin{split} \Delta^{LATE}(x, u'_d, u_d) &= E(\Delta | X = x, D(z) = 0, D(z') = 1) \\ &= x(\beta^1 - \beta^0) + E(U^1 - U^0| - z'\theta \le U^D \le z\theta, X = x) \\ &= x(\beta^1 - \beta^0) + E(U^1 - U^0| - z'\theta \le U^D \le z\theta) \\ &= \frac{1}{u_d - u'_d} \int_{u_d}^{u'_d} \Delta^{MTE}(x, u) du \end{split}$$

Local Average Treatment Effect (LATE)

► Then, as Z' and Z become arbitrarily close

$$\lim_{u'_d \to u_d} \Delta^{LATE}(x, u'_d, u_d) = \Delta^{MTE}(x, u_d)$$

- LATE measures the average MTE across a range of the unobserved selection distribution
- As that range converges to zero the LATE converges to the MTE evaluated exactly at a single point on the distribution

This structure allows us to unify a variety of treatment effects as follows:

$$ATE(x) = E(\Delta|X = x)$$

= $x(\beta^1 - \beta^0) + E(U^1 - U^0|, X = x)$
= $x(\beta^1 - \beta^0)$

Treatment on the treated (TOT)

$$D(z) = 1) = E(\Delta | X = x, Z = z, D(z) = 1)$$

= $x(\beta^1 - \beta^0) + E(U^1 - U^0 | U^D \ge -z'\theta)$
= $\int_0^1 \Delta^{MTE}(x, u) h_{ToT} du$

▶ h_{ToT} is the inverse of the compliance rate induced by the experiment

Heckman and Vytlacil also introduce the Policy Relevant Treatment Effect: mean effect of going from a baseline policy to an alternative policy per net person shifted

$$\frac{E(Y') - E(Y)}{E(D') - E(D)}$$

where the prime refers to an alternate policy

Marginal treatment effect

Several conceptual extensions to the Essential Heterogeneity concept:

- Variety of researchers have worked to build auction or WTP revelation mechanisms into experiments
 - Under perfect information the willingness to pay to receive the treatment should be a direct measure of the MTE
 - Examples of this include the Becker-Degroot-Marschak (BDM) mechanism, and more recently the 'Take it or Leave it' (TIOLI) pricing experiments of Chassang, Padro i Miguel and Snowberg
- The entire essential heterogeneity framework is still assuming that the treatment effects themselves are invariant
 - Identified only under the assumption that treatments alter ONLY the propensity to enter the treatment
 - But but not the impact of the treatment itself. This is clearly not the case for many interventions